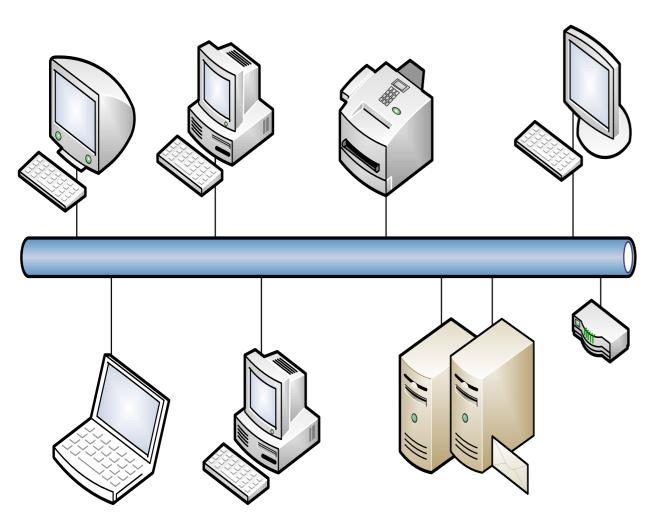
Reti di calcolatori e Internet

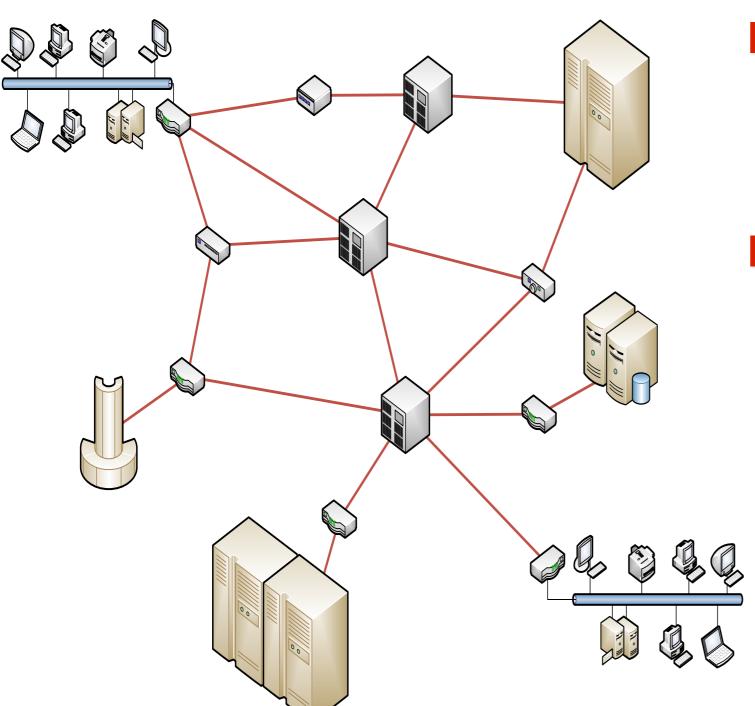
Dott. Angelo Di Iorio

angelo.diiorio@unibo.it


Un po' di frasi ricorrenti

- "Non ricordo gli orari del treno. Li cerco su Internet."
- "Vado su Internet e controllo le mie mail"
- "Incontro i miei amici su Internet"
- Come funziona tutto questo? Queste frasi sono completamente corrette?

Cosa è una rete di calcolatori


- Una struttura di telecomunicazione in cui più calcolatori (in genere *eterogenei*, cioè diversi per hardware e sistema operativo) sono collegati tra loro, allo scopo di condividere risorse e scambiarsi informazioni.
- Due modalità di classificazione delle reti:
 - Tipo di connessione
 - Dimensioni

Rete broadcast

- Il sistema di trasmissione è condiviso da tutti i calcolatori della rete;
- a ogni calcolatore è associato un indirizzo di rete,
- un pacchetto inviato sulla rete raggiunge tutti i calcolatori della rete, ma solo il calcolatore il cui indirizzo corrisponde a quello presente nel messaggio lo tratterrà per elaborarlo.

Rete punto-a-punto

- La rete è costituita da un insieme di connessioni individuali tra coppie di calcolatori;
- un pacchetto inviato da un calcolatore all'altro deve seguire un percorso attraverso i nodi della rete (instradamento)

Broadcast o punto-a-punto?

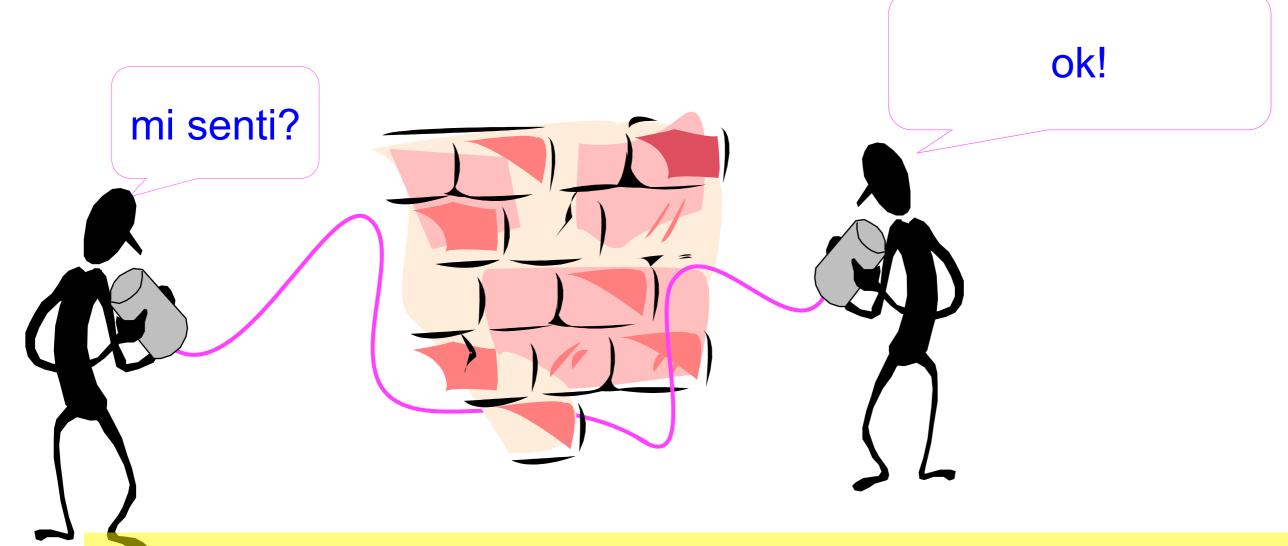
	Broadcast (multipunto)	Punto-a-punto
Si entra nella rete connettendosi a	La linea comune	Un nodo già connesso
Vantaggio principale	Riconfigurabilità	Estendibilità
Problema principale	Condivisione della linea	Instradamento
Soluzione adatta quando la rete è	Totalmente controllabile	Controllabile solo localmente

Dimensioni della rete

- Reti locali (Local Area Network, LAN),
 - dispositivi nello stesso edificio o in edifici adiacenti;
 - WLAN (Wireless LAN) senza cablaggio.
- Reti metropolitane (Metropolitan Area Network, MAN)
 - dispositivi nella stessa area urbana;
 - diffuse soprattutto nelle maggiori metropoli.
- Reti geografiche (Wide Area Network, WAN)
 - dispositivi in un'ampia area geografica.
- Reti personali (Personal Area Network, PAN)
 - dimensioni inferiori a quelle delle reti locali
 - dispositivi di uso personale, (PC portatili, telefoni cellulari, PDA, ...).

Cosa è Internet?

- Le reti possono essere collegate tra loro a formare reti di reti (*internets*)
- Chiamiamo Internet (con la "I" maiuscola) la rete planetaria di tutte le reti collegate tra loro e che comunicano con lo stesso protocollo
- "World Wide Web" non è sinonimo di "Internet"!


Ma come collegare reti e calcolatori, e farli comunicare?

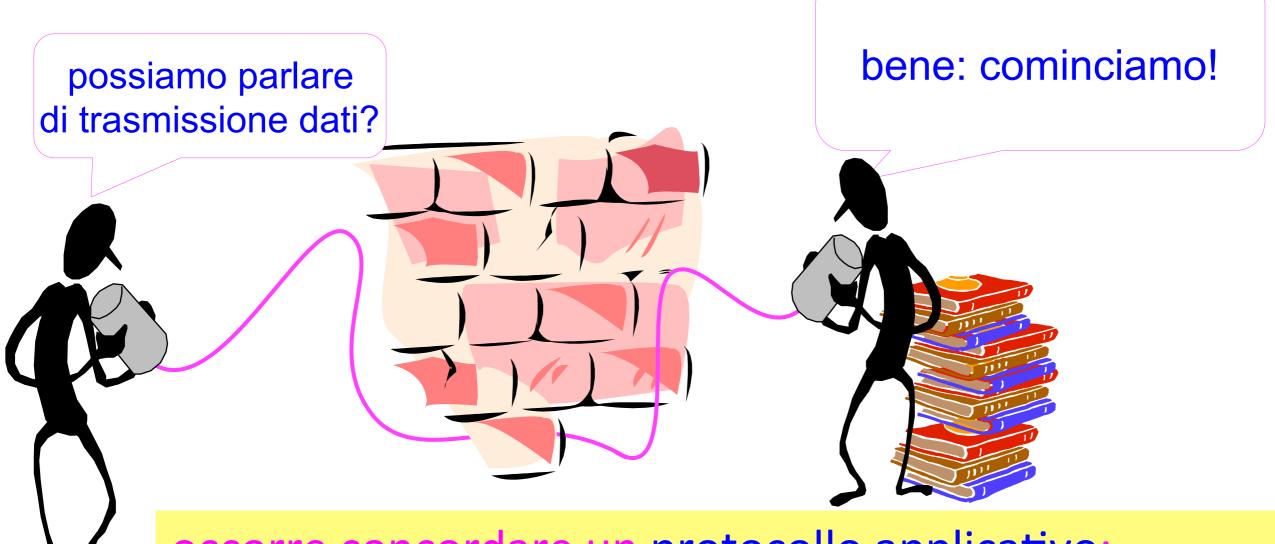
Un po' di storia

- Negli anni '70 con un finanziamento di DARPA (Defense Advanced Research Projects Agency) nasce il progetto Arpanet
 - originariamente costituita da due soli host
- Contemporaneamente si sperimentarono altre reti
- Nel 1974 Bob Kahn e Vinton Cerf elaborano nuovo protocollo di comunicazione: Transmission Control Protocol (TCP)
- TCP introduceva anche il concetto di gateway, un elemento raccordo tra due reti diverse
- Cerf e altri ricercatori svilupparono ulteriormente il progetto dividendolo in TCP e IP (Internet Protocolo)
- Interoperabilità tra reti fisiche diverse per real in modo da poter realizzare una internet (con l'iniziale minuscola), cioè una rete ampia ottenuta dal collegamento di tante reti di minori dimensioni

Architetture di rete: connessione fisica

Per comunicare è necessario che esista un canale fisico adatto

occorre predisporre una infrastruttura fisica: strumenti per trasferire i segnali tra le parti

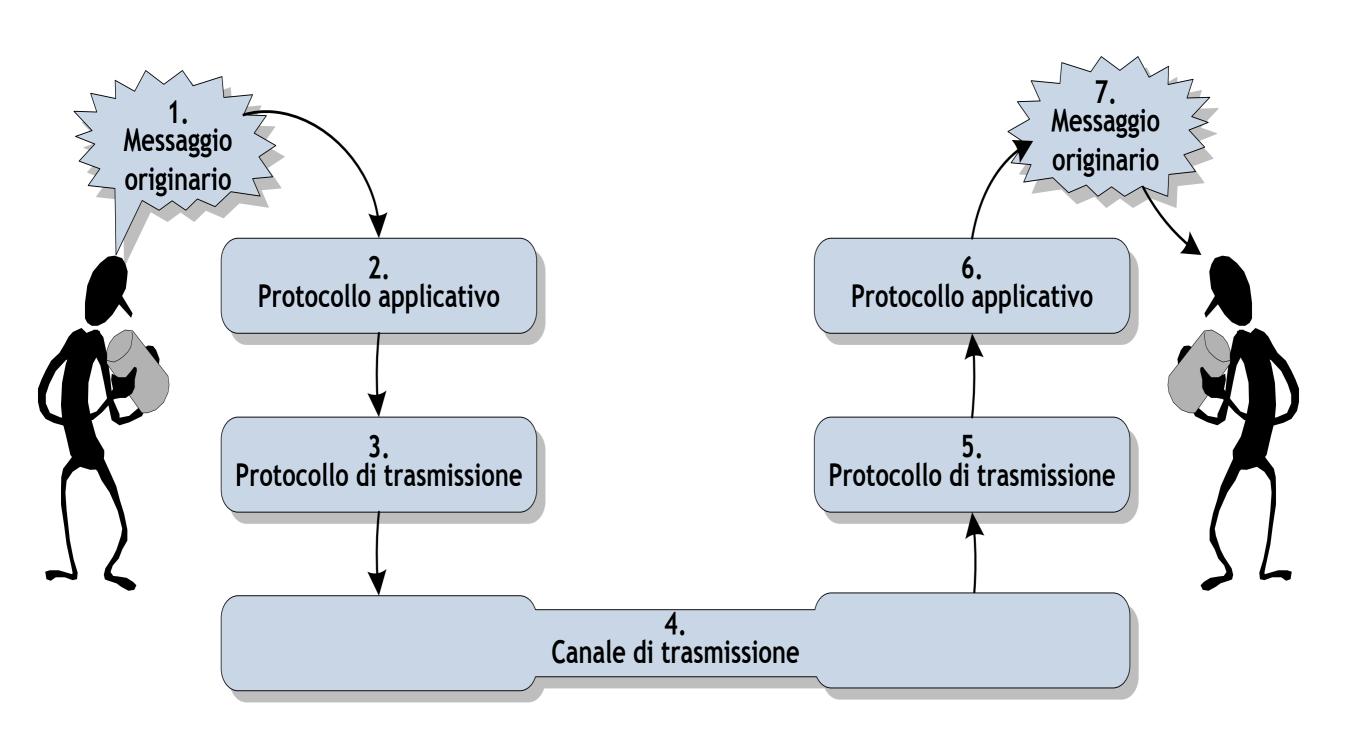

Trasmissione

... è necessario avere competenze linguistiche comuni (requisito per la trasmissione) certamente! mi capisci? occorre concordare dei protocolli di trasmissione:

delle regole per interpretare i segnali "a basso livello"

Comunicazione

... è necessario avere competenze di contenuto comuni

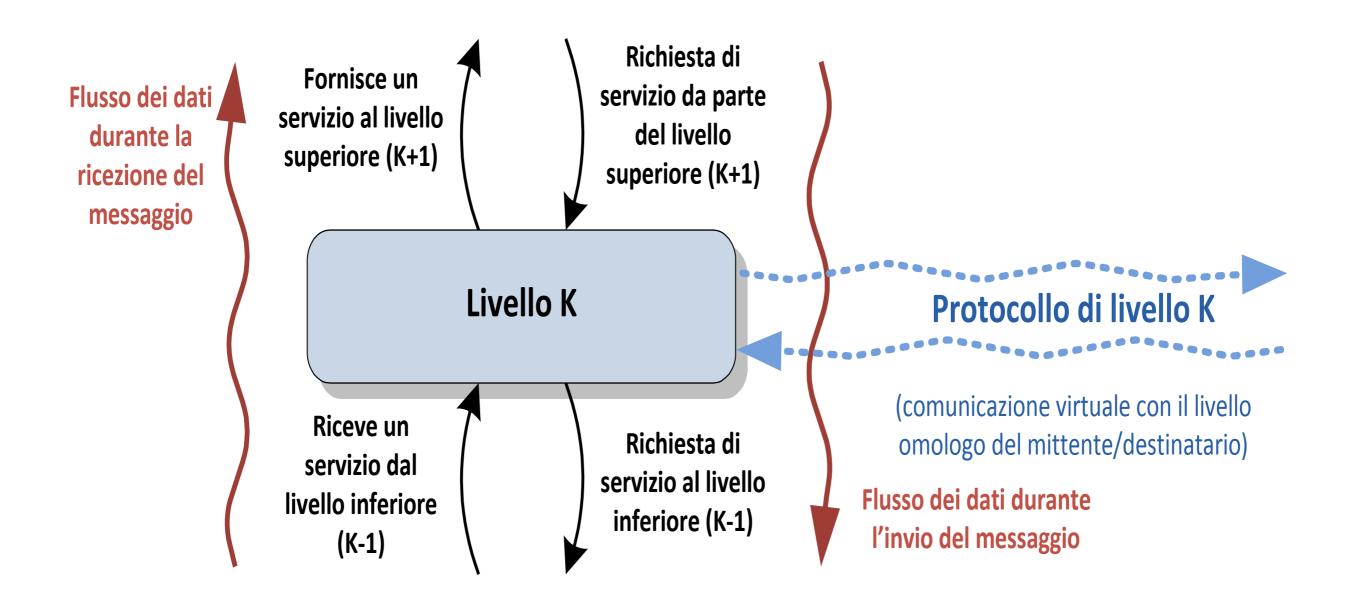


occorre concordare un protocollo applicativo: delle regole per interpretare i segnali "ad alto livello"

Procedura di base di comunicazione

- 1. il mittente stabilisce il contenuto del messaggio che intende comunicare al destinatario;
- 2. il mittente formula questo contenuto in accordo al protocollo applicativo (eventualmente tramite un traduttore)
- 3. il mittente riformula questo messaggio in accordo al protocollo di trasmissione (eventualmente tramite traduttore) e lo invia sul canale di trasmissione nella forma di un segnale;
- 4. il canale di trasmissione trasferisce questo segnale al destinatario;
- il destinatario riceve questo segnale e, eventualmente con il supporto di un traduttore, lo interpreta come un messaggio in accordo al protocollo di trasmissione;
- 6. il destinatario interpreta questo messaggio in accordo al protocollo applicativo (eventualmente tramite un un traduttore)
- 7. il destinatario acquisisce il contenuto del messaggio.

Procedura di base di comunicazione


Protocolli di comunicazione

- Per comunicare i calcolatori debbono seguire delle regole: i protocolli di comunicazione, che specificano:
 - i formati dei dati,
 - la struttura dei pacchetti (includendo la definizione delle informazioni di controllo)
 - la velocità di trasmissione
 - ...
- Definire tutte queste proprietà tramite un unico protocollo è praticamente impossibile, per questo si definisce un insieme di protocolli:
 - ogni protocollo gestisce univocamente una componente ben definita della comunicazione
 - ogni protocollo condivide con gli altri protocolli i dati di cui essi necessitano.

Architettura di protocolli a livelli

- Ogni protocollo formalizza un diverso livello di astrazione della comunicazione tra calcolatori.
- Le funzioni associate a ogni livello sono ben definite e omogenee tra loro.
- Un cambiamento nel protocollo di un livello non influenza i protocolli definiti per gli altri livelli.
- Scopo di ogni livello è di fornire servizi alle entità del livello immediatamente superiore, mascherando il modo in cui questi sono implementati e sfruttando opportunamente i servizi che gli vengono a sua volta forniti dal livello immediatamente inferiore.

Funzionamento di un livello

I livelli dei protocolli di Internet

- Anche i protocolli di Internet sono organizzati su livelli, costruiti uno sull'altro.
- In ogni nodo della rete, sono presenti tutti i livelli, e ogni livello nasconde quelli che gli stanno sotto.
- La comunicazione avviene, concettualmente, tra due entità che stanno su due nodi diversi, ma allo stesso livello. Ed avviene secondo il protocollo di quel livello.
- Per realizzare davvero la comunicazione, quel protocollo si rivolgerà ai livelli sottostanti, fintanto che non si arriverà alla comunicazione fisica tra i due nodi.

I (cinque) livelli dei protocolli di Internet

fisico

 Interfaccia fisica tra le stazioni per la trasmissione dei dati e il mezzo di trasmissione.

accesso alla rete

 Scambio dati fra un sistema finale e la rete a cui è collegato, specificando come organizzare i dati in frame e come trasmetterli sulla rete.

internet – IP (Internet Protocol)

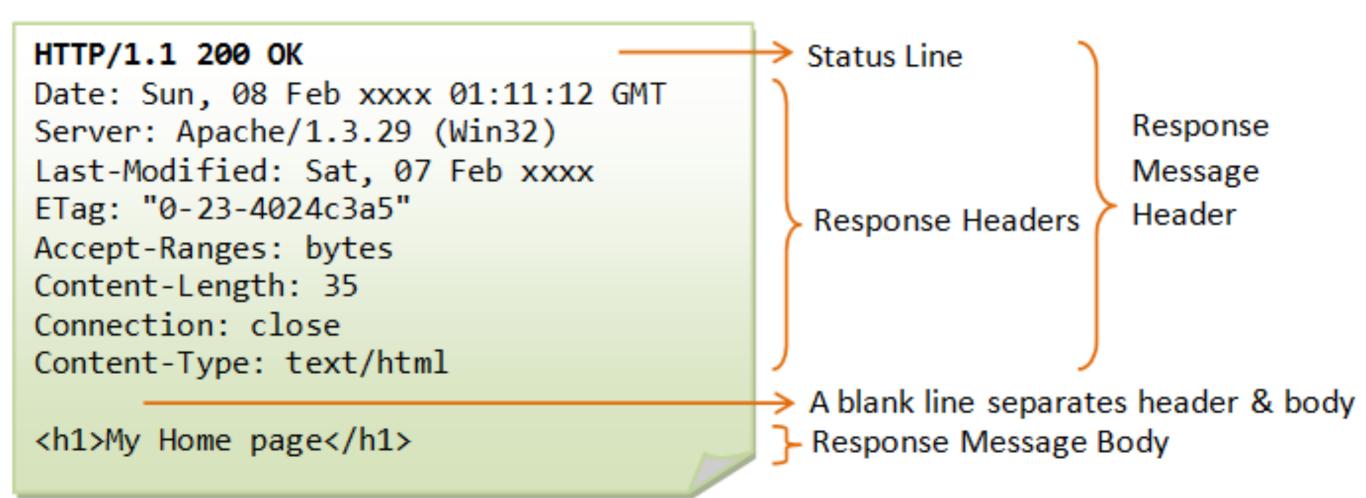
- Scambio di dati tra sistemi che non appartengono alla stessa rete: occorrono delle procedure per attraversare reti multiple interconnesse.
- Specifica il formato dei pacchetti inviati attraverso la rete e i meccanismi utilizzati per farli transitare dal calcolatore sorgente attraverso uno o più router verso il destinatario.

trasporto (host to host) - TCP (Transmission Control Protocol).

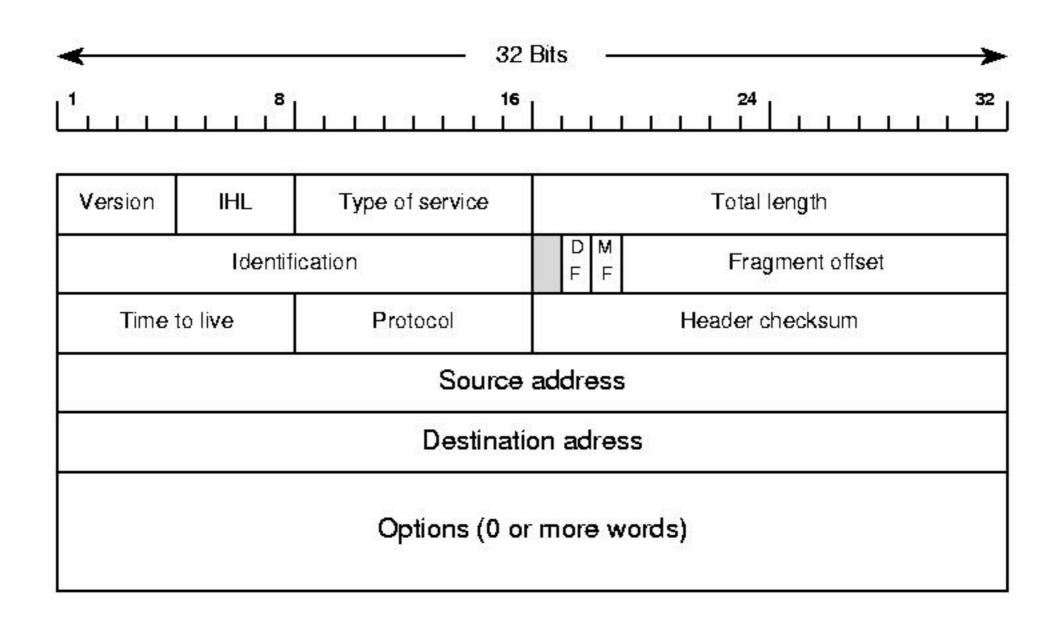
 Trasmessione affidabile, con la garanzia che tutte giungano a destinazione nello stesso ordine di partenza.

applicazione

Come un'applicazione può utilizzare l'insieme dei protocolli TCP/IP.

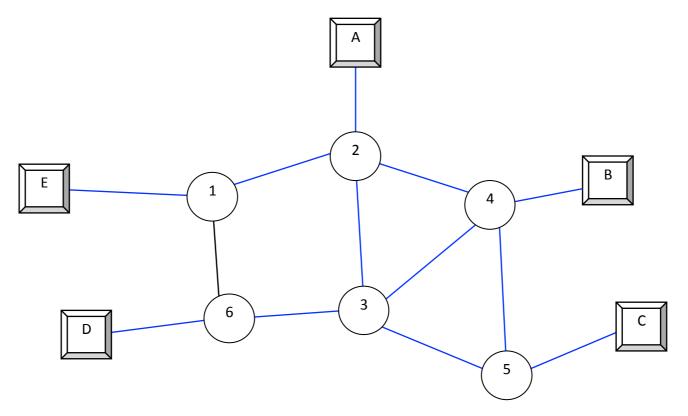

Esempio di protocollo a livello applicazione: SMTP

From: Giuseppe Verdi < g.verdi@CS.UniBO.IT> Date: Mer gen 15, 2003 17:25:47 Europe/Rome To: Paolo Rossi <p.rossi@CS.UniBO.IT> Subject: Prova Received: by le (mbox p.rossi) (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jan 15 17:25:55 2003) Received: from [130.136.2.220] (genesis.cs.unibo.it [130.136.2.220]) by CS.UniBO.IT (8.9.3/8.9.3/Debian 8.9.3-6) with ESMTP id RAA29182 for <p.rossi@cs.unibo.it>; Wed, 15 Jan 2003 17:25:45 +0100 User-Agent: Microsoft-Entourage/10.0.0.1309 Message-Id: <BA4B4A1B.D4BE%g.verdi@cs.unibo.it> Mime-Version: 1.0 Content-Type: text/plain; charset="US-ASCII"


Questo e' il contenuto o corpo del messaggio di posta elettronica.

Content-Transfer-Encoding: 7bit

Esempio di protocollo a livello applicazione: HTTP



Esempio: IP

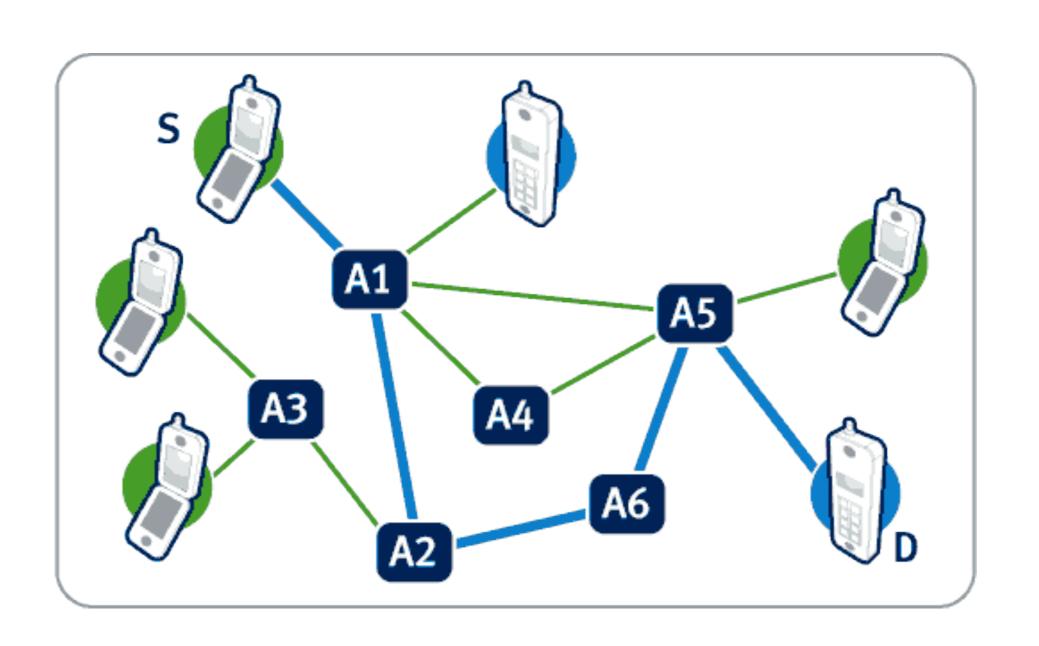
Rete commutata e instradamento (routing)

Internet è quindi una rete commutata (non completamente connessa)

- Per trasferire i dati tra gli host collegati alla rete si adottano due modalità
 - Commutazione di circuito
 - Commutazione di pacchetto

Reti a commutazione di circuito

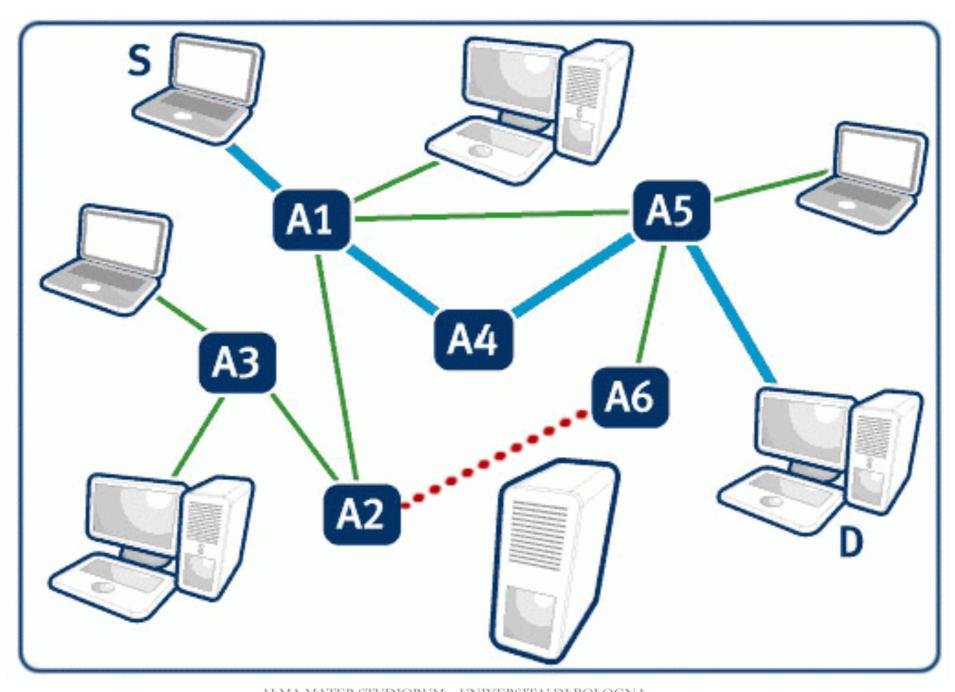
 Tra sorgente e destinatario viene creato un canale temporaneo dedicato


Tre fasi della comunicazione

- fase iniziale di attivazione per stabilire il cammino tra sorgente e destinatario
 - il trasmettitore invia una richiesta di collegamento al nodo cui è direttamente connesso, il nodo successivo crea un collegamento a un nodo a lui direttamente connesso e che sia su un percorso che porti al destinatario,

• • •

- se è stato identificato un cammino libero e se il destinatario è disponibile a ricevere la comunicazione, viene inviato un segnale alla sorgente;
- fase di trasferimento dei dati
 - effettivo trasferimento dei dati (su un cammino riservato)
- fase conclusiva di chiusura
 - rilascio risorse


Reti a commutazione di circuito

Reti a commutazione di pacchetto

- Si basa sull'invio di pacchetti di dati di dimensioni ridotte che contengono
 - i dati da trasmettere
 - informazioni di controllo (l'indirizzo del destinatario, il numero progressivo, ...).
- I pacchetti vengono spediti uno per volta attraverso la rete
- Ogni nodo che riceve un pacchetto:
 - lo memorizza (store), lo esamina per capire chi è il destinatario e lo invia a un nodo successivo (forward)
- Vantaggi:
 - le linee risultano utilizzate in modo più efficiente
 - consente un collegamento efficiente anche tra calcolatori con diverse velocità di trasmissione;
 - i pacchetti possono essere re-invitati (e verificati)
 - è possibile gestire comunicazioni a priorità diverse.

Reti a commutazione di pacchetto

Indirizzare un nodo su Internet

- Ogni nodo della rete deve poter essere individuato in modo univoco
- Soluzione 1: autorità centrale che controlla e assegna gli indirizzi
- Funziona?

Indirizzare un nodo su Internet

- Problemi:
 - Non scalabile
 - Difficile manutenzione
 - Contraria ai principi stessi di progettazione di una rete aperta
- Soluzione 2: *indirizzamento gerarchico*, in cui l'indirizzo si compone di varie parti che identificano la rete principale, le sottoreti ed ogni singolo computer

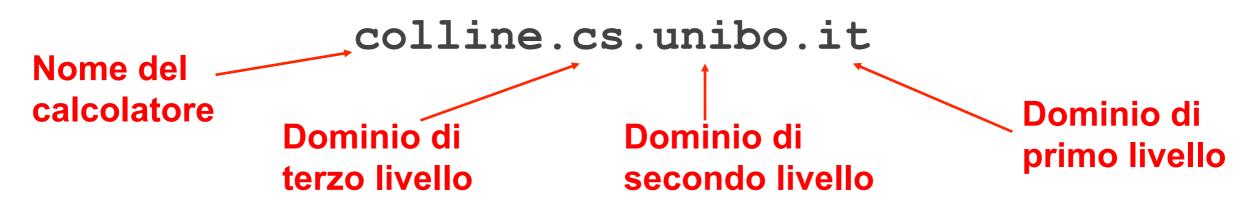
Indirizzamento gerarchico

- L'universo Internet è suddiviso in reti fisiche
- Ad ogni rete fisica è assegnato in modo centralizzato un certo numero (indirizzo)
 - Esempio: 130
- A ciascun nodo della rete fisica è assegnato un indirizzo composto dall'indirizzo della rete fisica concatenato con un altro numero, che individua in modo univoco il nodo all'interno della rete;
 - Esempio: 130.136
- Se la rete fisica è suddivisa in sottoreti, l'assegnamento di indirizzi interni avviene a sua volta in modo gerarchico;
 - Esempio: 130.136.1.110

Gli indirizzi IP

- Gli indirizzi dei nodi sono definiti e gestiti a livello rete: protocollo IP che assegna ad ogni computer il suo indirizzo IP
- Un indirizzo IP viene indicato come sequenza di 4 numeri decimali, ciascuno compreso tra 0 e 255, separati da un punto
- Esempi: 130.136.1.110, 209.85.129.99, 91.198.174.2

Problema?


Chi assegna gli indirizzi IP?

- Anche qui una struttura gerarchica:
 - Un'organizzazione centrale, la *Internet Assigned Number Authority*, IANA, assegna alle reti fisiche il loro numero.
 - IANA delega analoghi organismi regionali all'assegnamento dei numeri IP all'interno delle relative zone geografiche.

 RIPE NCC (*Réseaux IP Européens*) per l'Europa
 - I gestori delle singole reti fisiche sono responsabili dell'assegnamento dei numeri ai loro nodi. Ad esempio, il CeSIA per l'Università di Bologna.
 - I gestori delle reti locali assegnano gli indirizzi di ogni calcolatore. Ad esempio: gli amministratori della rete del laboratorio di Informatica

Domini e indirizzi simbolici

- Gli indirizzi IP sono troppo difficili da ricordare e gestire!
- Gli *indirizzi simbolici di dominio* (o *nomi logici*) indicano un nodo della rete con una sequenza di caratteri (etichette, *label*) separate da punti. Es. colline.cs.unibo.it
- L'insieme e la struttura di questi nomi costituiscono il Domain Name System, o DNS, di Internet.
- Anche DNS è strutturato in modo gerarchico. La struttura a livelli si legge a partire da destra.

Domain Name Resolving

- La traduzione da nomi logici a indirizzi IP è compito di servizi specializzati, chiamati *Domain Name Resolver* (o *Domain Name Server*, **DNS**)
- Anche i DNS sono organizzati gerarchicamente:
 - Impossibile avere un luogo centralizzato che memorizza tutte le tabelle di conversione
 - Se un Resolver non conosce l'IP gira la richiesta ad un Resolver di livello superiore e così via
 - Fino ai Resolver Radice (solo 13 su tutta la Rete!)
- Vantaggi:
 - Più semplice la manutenzione e aggiornamento delle tabelle
 - Gli utenti sono svincolati dagli indirizzi IP ed è possibile apportare modifiche "locali" aggiornando il DNS

Un punto importante

■ La struttura dei nomi logici **non** è collegata con la gerarchia degli indirizzi IP. Per esempio, i nodi del dominio .it **non** fanno parte della medesima rete fisica.

```
papageno.cs.unibo.it : IP 130.136.2.37
www.miur.it : 193.206.6.24
```

Chi assegna i nomi logici?

- 1. la Internet Corporation for Assigned Names and Numbers (www.icann.org) assegna i dominî di primo livello.
 - .edu (università e scuole) , .com (commerciale), .mil
 (militare), .gov (governativo), .int (internazionale), .net
 (fornitori di connettività)
 - Poi nazionali (come .it, .fr, .jp, ecc.). o altri quali .biz (business), .pro (professioni).
- 2. ogni dominio di primo livello ha un organismo di gestione (la sua Registration Authority):
 - una volta registrato un nome può essere usato solo dal titolare (es: chi è autorizzato ad usare rossi.it?).
- i domini di terzo livello sono assegnati dal titolare del dominio di secondo livello;
- 4. e così via.

Come si passa da DNS a IP?

- Il calcolatore responsabile di un dominio mantiene un elenco dei calcolatori responsabili dei suoi sottodomini (e ne conosce i relativi indirizzi IP),
 - il calcolatore responsabile del dominio it deve sapere chi sono (qual è il loro indirizzo IP) i calcolatori responsabili di tutti i suoi sottodomini: liuc.it, unisa.it, miur.it, ...
 - il calcolatore responsabile del dominio liuc.it, deve sapere chi sono i calcolatori responsabili di tutti i suoi sottodomini: cetic.liuc.it, stud.liuc.it, cerst.liuc.it, ...
- Per tradurre l'indirizzo DNS di un calcolatore nel suo indirizzo IP si deve interrogare il responsabile di ciascuno dei domini (di I, II, ... livello) cui quel calcolatore appartiene:
 - il responsabile del dominio di I livello sa qual è il responsabile del dominio di II livello, e così via